Chapter 2 Matrix Algebra

Section 2.1 Matrix Operations

Definitions

- The diagonal entries in an $m \times n$ matrix $A=\left[a_{i j}\right]$ are $a_{11}, a_{22}, a_{33}, \ldots$, and they form the main diagonal of A.
- A diagonal matrix is a square $n \times n$ matrix whose nondiagonal entries are zero. $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right]$

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- An $m \times n$ matrix whose entries are all zero is a zero matrix and is written as $\mathbf{0}$.

Sums and Scalar Multiples

1. If A and B are $m \times n$ matrices, then the sum $A+B$ is the $m \times n$ matrix whose columns are the sums of the corresponding columns in A and B.
2. If r is a scalar and A is a matrix, then the scalar multiple $r A$ is the matrix whose columns are r times the corresponding columns in A.

Theorem 1 Let A, B, and C be matrices of the same size, and let r and s be scalars.

- $A+B=B+A$
- $r(A+B)=r A+r B$
- $(A+B)+C=A+(B+C)$
- $(r+s) A=r A+s A$
- $A+\mathbf{0}=A$
- $r(s A)=(r s) A$

Matrix Multiplication

Motivation
When a matrix B multiplies a vector \mathbf{x}, it transforms \mathbf{x} into the vector $B \mathbf{x}$. If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(B \mathbf{x})$.

FIGURE 2 Multiplication by B and then A.
Thus $A(B \mathbf{x})$ is produced from \mathbf{x} by a composition of mappings-the linear transformations studied in Section 1.8. We want to represent this composite mapping as multiplication by a single matrix, denoted by $A B$, so that

$$
A(B \mathbf{x})=(A B) \mathbf{x}
$$

FIGURE 3 Multiplication by $A B$.

Definition (Matrix Multiplication) If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns $\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}$, then the product $A B$ is the $m \times p$ matrix whose columns are $A \mathbf{b}_{1}, \ldots, A \mathbf{b}_{p}$. That is,

$$
A B=A\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p}
\end{array}\right]=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]
$$

Remark:

- Each column of $A B$ is a linear combination of the columns of A using weights from the corresponding column of B.
- $A B$ has the same number of rows as A and the same number of columns as B.

$$
A_{\underline{m \times n}} B_{n \times p}=(A B)_{\underline{m \times p}}
$$

(:) Question. If a matrix A is 5×6 and the product $A B$ is 5×8, what is the size of $B ? 6 \times 8$

Example 1. Let $A=\left[\begin{array}{rrr}2 & 0 & -1 \\ 4 & -3 & 2\end{array}\right], \quad B=\left[\begin{array}{rrr}7 & -5 & 1 \\ 1 & -4 & -3\end{array}\right]$,

$$
C=\left[\begin{array}{rr}
1 & 2 \\
-2 & 1
\end{array}\right], \quad D=\left[\begin{array}{rr}
3 & 5 \\
-1 & 4
\end{array}\right], \quad E=\left[\begin{array}{r}
-5 \\
3
\end{array}\right]
$$

Compute $A+2 B, 3 C-E, C B, E B$. If an expression is undefined, explain why.

$$
\text { - } A+2 B=\left[\begin{array}{ccc}
2 & 0 & -1 \\
4 & -3 & 2
\end{array}\right]+2 \cdot\left[\begin{array}{ccc}
7 & -5 & 1 \\
1 & -4 & -3
\end{array}\right]=\left[\begin{array}{ccc}
16 & -10 & 1 \\
6 & -11 & -4
\end{array}\right]
$$

- $3 C-E$ is undefined $\sin c e \frac{3 C}{b_{3}}$ is 2×2, but E is 2×1

$$
\begin{aligned}
C_{2 \times 2} \cdot B_{2 \times 3} & =\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
7 & -5 & 1 \\
1 & -4 & -3
\end{array}\right]=\left[\begin{array}{lll}
C \overrightarrow{b_{1}} & C \vec{b}_{2} & C \vec{b}_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 \cdot 7+2 \cdot 1 & 1 \cdot(-5)+2 \cdot(-4) & 1 \cdot 1+2 \cdot(-3) \\
-2 \cdot 7+1 \cdot 1 & (-2) \cdot(-5)+1 \cdot(-4) & -2 \cdot 1+1 \cdot(-3)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
9 & -13 & -5 \\
-13 & 6 & -5
\end{array}\right]
\end{aligned}
$$

- $E_{2 \times 1} B_{2 \times 3}$ is not defined because the number

Of columns of E is not the same as the number of rows of B,

ROW-COLUMN RULE FOR COMPUTING $A B$
If the product $A B$ is defined, then the entry in row i and column j of $A B$ is the sum of the products of corresponding entries from row i of A and column j of B. If $(A B)_{i j}$ denotes the (i, j)-entry in $A B$, and if A is an $m \times n$ matrix, then

$$
(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}
$$

Example 2. Compute the product $A B$ in two ways:
(a) by the definition, where $A \mathbf{b}_{1}$ and $A \mathbf{b}_{2}$ are computed separately, and

$$
A=\left[\begin{array}{rr}
4 & -2 \\
-3 & 0 \\
3 & 5
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & 3 \\
4 & -1
\end{array}\right]
$$

ANS: (a)

$$
A B=\left[\begin{array}{ll}
A \vec{b}_{1} & A \vec{b}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-4 & 14 \\
-3 & -9 \\
23 & 4
\end{array}\right]
$$

(b) Row-column Rule:

$$
\begin{aligned}
A B & =\left[\begin{array}{cc}
4 & -2 \\
-3 & 0 \\
3 & 5
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 3 \\
4 & -1
\end{array}\right]=\left[\begin{array}{cc}
4 \cdot 1 \cdot 2 \cdot 4 & 4 \cdot 3-2 \cdot(-1) \\
-3 \cdot 1+0 \cdot 4 & -3 \cdot 3 \cdot 0 \cdot(-1) \\
3 \cdot 1+5 \cdot 4 & 3 \cdot 3+5 \cdot(-1)
\end{array}\right] \\
& =\left[\begin{array}{cc}
-4 & 14 \\
-3 & -9 \\
23 & 4
\end{array}\right]
\end{aligned}
$$

Example 3. If $A=\left[\begin{array}{rr}1 & -2 \\ -2 & 5\end{array}\right]$ and $A B=\left[\begin{array}{rrr}-1 & 2 & -1 \\ 6 & -9 & 3\end{array}\right]$, determine the first and third columns of B. ANS: $A B=\left[\begin{array}{lll}A \vec{b}_{1} & A \vec{b}_{2} & \vec{A} \vec{b}_{3}\end{array}\right]=\left[\begin{array}{ccc}-1 & 2 & -1 \\ 6 & -9 & 3\end{array}\right]$
The 1st column of B satisfies the equation

$$
A \vec{x}=\left[\begin{array}{r}
-1 \\
6
\end{array}\right] \Rightarrow\left[\begin{array}{cc|c}
1 & -2 & -1 \\
-2 & 5 & 6
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & 0 & 7 \\
0 & 1 & 4
\end{array}\right] . \text { So } \vec{b}_{1}=\left[\begin{array}{l}
7 \\
4
\end{array}\right]
$$

Similarly.

$$
A \vec{x}=A \overrightarrow{b_{3}}=\left[\begin{array}{c}
-1 \\
3
\end{array}\right] \Rightarrow\left[\begin{array}{cc|c}
1 & -2 & -1 \\
-2 & 5 & 3
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

So $\vec{b}_{3}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Properties of Matrix Multiplication

Theorem 2. Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.

- $A(B C)=(A B) C$ (associative law of multiplication)
- $A(B+C)=A B+A C$ (left distributive law)
- $(B+C) A=B A+C A$ (right distributive law)
- $r(A B)=(r A) B=A(r B)$ for any scalar r
- $I_{m} A=A=A I_{n}$ (identity for matrix multiplication)

Warnings:

1. In general, $A B \neq B A$.
2. The cancellation laws do not hold for matrix multiplication. That is, if $A B=A C$, then it is not true in general that $B=C$. (See Exercise 10.)
3. If a product $A B$ is the zero matrix, you cannot conclude in general that either $A=0$ or $B=0$. (See Exercise 12.)

Power of a Matrix
If A is an $n \times n$ matrix and if k is a positive integer, then A^{k} denotes the product of k copies of A.

$$
A^{k}=\underbrace{A \cdots A}_{k}
$$

The Transpose of a Matrix
Given an $m \times n$ matrix A, the transpose of A is the $n \times m$ matrix, denoted by A^{T}, whose columns are formed from the corresponding rows of A.

$$
\text { Example: } A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]_{3 \times 2}, \quad A^{\top}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]_{2 \times 3}
$$

Theorem 3. Let A and B denote matrices whose sizes are appropriate for the following sums and products.

- $\left(A^{T}\right)^{T}=A$
- $(A+B)^{T}=A^{T}+B^{T}$
- For any scalar $r,(r A)^{T}=r A^{T}$
- $(A B)^{T}=B^{T} A^{T}$ (The transpose of a product of matrices equals the product of their transposes in the reverse order.)

Example 4. Let $\mathbf{u}=\left[\begin{array}{r}-2 \\ 3 \\ -4\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. Compute $\mathbf{u}^{T} \mathbf{v}, \mathbf{v}^{T} \mathbf{u}, \mathbf{u} \mathbf{v}^{T}$, and $\mathbf{v} \mathbf{u}^{T}$. How are they related?
ANS: $\vec{u}^{\top} \vec{v}=\left[\begin{array}{lll}-2 & 3 & -4]_{\times 3}\left[\begin{array}{l}a \\ b \\ c\end{array}\right]_{3 \times 1}=-2 a+3 b-4 c \\ 11\end{array}\right.$

$$
\left.\vec{v}^{\top} \vec{u}=\left[\begin{array}{lll}
a & b & c
\end{array} \begin{array}{r}
-2 \\
3 \\
-4
\end{array}\right] 3 \times 1\right]-2 a+3 b-4 c
$$

$$
\stackrel{\rightharpoonup}{u} \stackrel{\rightharpoonup}{V}^{T}=\left[\begin{array}{r}
-2 \\
3 \\
-4
\end{array}\right]_{3 \times 1} \cdot[a \quad b \quad c]_{1 \times 3}=\left[\begin{array}{ccc}
-2 a & -2 b & -2 c \\
3 a & 3 b & 3 c \\
-4 a & -4 b & -4 c
\end{array}\right]_{3 \times 3}
$$

$$
\vec{v} \vec{u}^{\top}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]_{3 \times 1}\left[\begin{array}{lll}
-2 & 3 & -4
\end{array}\right]_{\mid \times 3}=\left[\begin{array}{ccc}
-2 a & 3 a & -4 a \\
-2 b & 3 b & -4 b \\
-2 c & 3 c & -4 c
\end{array}\right]
$$

Notice: $\vec{u}^{\top} \vec{v}$ and $\vec{v}^{\top} \vec{u}$ are real numbers. and real numbers equal to their transposes.

$$
\cdot \vec{u} \vec{v}^{\top}=\left(\vec{v} \vec{u}^{\top}\right)^{\top}
$$

You need to show this in the the Handwritten HO .
Hint: Use The 3.

The following questions are left as exercises. I will provide the complete notes for solving them after the lecture.
Exercise 5. Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5\end{array}\right]$ and $D=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3\end{array}\right]$. Compute $A D$ and $D A$. Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a 3×3 matrix B, not the identity matrix or the zero matrix, such that $A B=B A$.

Solution.

$$
\begin{aligned}
& A D=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 5
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 3
\end{array}\right]=\left[\begin{array}{rrr}
2 & 4 & 3 \\
2 & 8 & 9 \\
2 & 16 & 15
\end{array}\right] \\
& D A=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 5
\end{array}\right]=\left[\begin{array}{rrr}
2 & 2 & 2 \\
4 & 8 & 12 \\
3 & 12 & 15
\end{array}\right]
\end{aligned}
$$

Right-multiplication (that is, multiplication on the right) by the diagonal matrix D multiplies each column of A by the corresponding diagonal entry of D.

Left-multiplication by D multiplies each row of A by the corresponding diagonal entry of D.
To make $A B=B A$, one can take B to be a multiple of I_{3}. For instance, if $B=3 I_{3}$, then $A B$ and $B A$ are both the same as $3 A$.

Exercise 6. Let $A=\left[\begin{array}{rr}2 & -4 \\ -3 & 6\end{array}\right]$. Construct a 2×2 matrix B such that $A B$ is the zero matrix. Use two different nonzero columns for B.

Solution. Consider $B=\left[\begin{array}{ll}\mathbf{b}_{1} & \mathbf{b}_{2}\end{array}\right]$. To make $A B=0$, one needs $A \mathbf{b}_{1}=\mathbf{0}$ and $A \mathbf{b}_{2}=\mathbf{0}$.
By inspection of A, a suitable \mathbf{b}_{1} is $\left[\begin{array}{l}2 \\ 1\end{array}\right]$, or any multiple of $\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Example: $B=\left[\begin{array}{ll}2 & -2 \\ 1 & -1\end{array}\right]$.

Exercise 7. Compute $A-5 I_{3}$ and $\left(5 I_{3}\right) A$, when

$$
A=\left[\begin{array}{rrr}
9 & -1 & 3 \\
-8 & 7 & -3 \\
-4 & 1 & 8
\end{array}\right]
$$

Solution. $A-5 I_{3}=\left[\begin{array}{rrr}9 & -1 & 3 \\ -8 & 7 & -3 \\ -4 & 1 & 8\end{array}\right]-\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]=\left[\begin{array}{rrr}4 & -1 & 3 \\ -8 & 2 & -3 \\ -4 & 1 & 3\end{array}\right]$
$\left(5 I_{3}\right) A=5\left(I_{3} A\right)=5 A=5\left[\begin{array}{rrr}9 & -1 & 3 \\ -8 & 7 & -3 \\ -4 & 1 & 8\end{array}\right]=\left[\begin{array}{rrr}45 & -5 & 15 \\ -40 & 35 & -15 \\ -20 & 5 & 40\end{array}\right]$, or
$\left(5 I_{3}\right) A=\left[\begin{array}{llr}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]\left[\begin{array}{rrr}9 & -1 & 3 \\ -8 & 7 & -3 \\ -4 & 1 & 8\end{array}\right]=\left[\begin{array}{rrr}5 \cdot 9+0+0 & 5(-1)+0+0 & 5 \cdot 3+0+0 \\ 0+5(-8)+0 & 0+5 \cdot 7+0 & 0+5(-3)+0 \\ 0+0+5(-4) & 0+0+5 \cdot 1 & 0+0+5 \cdot 8\end{array}\right]$
$=\left[\begin{array}{rrr}45 & -5 & 15 \\ -40 & 35 & -15 \\ -20 & 5 & 40\end{array}\right]$

